CivArchive
    Knife XL FFusion - CivitaI / LoRA + FA Text Encoder - Knife-FFusion-LoRA-FA
    Preview 2584655Preview 2584508Preview 2584519Preview 2584506Preview 2584505Preview 2584507Preview 2584511Preview 2584512Preview 2584510Preview 2584516Preview 2584520Preview 2584509Preview 2584504Preview 2584513Preview 2584515Preview 2584517Preview 2584503Preview 2584514Preview 2584518Preview 2584521

    🗡️ FFusionAI's Knife LoRA Model Demonstrations

    This demonstration dives deep into the intricacies of three distinct LoRA trainings. Each model has been meticulously trained on a unique dataset of 200 knives, captured in the professional environment of our partner, NoramePhotography Studio. The visuals span from pure white studio shots to rustic wood settings, glinting coins, and fantasy-inspired indoor decor.

    🔍 Dataset Insight: The dataset, although rich in variety, was curated with a fast and informal tagging approach, mainly for demonstration purposes. If you're intrigued by the knife photo session and wish for a more in-depth training, do let us know!

    While depth variations are in the pipeline, our current focus revolves around evaluating the distinct LoRA variations.

    🎯 Models at a Glance:

    1. CivitAI's Quick LoRA Training (Lora1)

    📌 Highlights:

    • Powered by CivitAI's new LoRA trainer.

    • Swift 10-epoch run, completed in a breezy 20-30 minutes.

    • Quality may vary with default settings, but hey, time is essence!

    📊 Specifications:

    • Date: 2023-09-19T14:36:14

    • Resolution: 1024x1024

    • Architecture: stable-diffusion-xl-v1-base/lora

    • Network Dim/Rank: 32.0

    • Alpha: 16.0

    Knife_XL_FFusion.safetensors
    Date: 2023-09-19T14:36:14 Title: Knife_XL_FFusion
    Resolution: 1024x1024 Architecture: stable-diffusion-xl-v1-base/lora
    Network Dim/Rank: 32.0 Alpha: 16.0
    Module: networks.lora
    Learning Rate (LR): 0.0005 UNet LR: 0.0005 TE LR: 5e-05
    Optimizer: bitsandbytes.optim.adamw.AdamW8bit(weight_decay=0.1)
    Scheduler: cosine_with_restarts  Warmup steps: 0
    Epoch: 10 Batches per epoch: 74 Gradient accumulation steps: 1
    Train images: 282 Regularization images: 0
    Multires noise iterations: 6.0 Multires noise discount: 0.3
    Min SNR gamma: 5.0 Zero terminal SNR: True Max grad norm: 1.0  Clip skip: 1
    Dataset dirs: 1
            [img] 282 images
    UNet weight average magnitude: 2.634092236933176
    UNet weight average strength: 0.009947009810559605
    Text Encoder (1) weight average magnitude: 1.696394163771355
    Text Encoder (1) weight average strength: 0.008538951936953606
    Text Encoder (2) weight average magnitude: 1.720911101275907
    Text Encoder (2) weight average strength: 0.006699097931942388

    2. LoRA FA with Text Encoder Only (Lora2)

    📌 Highlights:

    • Exclusive training on text encoder.

    • Absence of UNet in this LoRA variant.

    📊 Specifications:

    • Date: 2023-09-19T20:04:24

    • Resolution: 1024x1024

    • Architecture: stable-diffusion-xl-v1-base/lora

    • Network Dim/Rank: 32.0

    • Alpha: 32.0

    Knife-FFusion-LoRA-FA.safetensors
    
    Date: 2023-09-19T20:04:24 Title: Knife-FFusion-LoRA-FA
    Resolution: 1024x1024 Architecture: stable-diffusion-xl-v1-base/lora
    Network Dim/Rank: 32.0 Alpha: 32.0
    Module: networks.lora_fa
    
    Text Encoder (1) weight average magnitude: 3.986337637923385
    Text Encoder (1) weight average strength: 0.018590648076750333
    Text Encoder (2) weight average magnitude: 4.043434837883338
    Text Encoder (2) weight average strength: 0.014620680042179104
    No UNet found in this LoRA

    3. General LoRA Training

    📌 Highlights:

    • Comprehensive LoRA training with diverse specifications.

    • Trained on an extensive dataset of 485 knife images.

    📊 Specifications:

    • Date: 2023-08-26T23:08:56

    • Resolution: 1024x1024

    • Architecture: stable-diffusion-xl-v1-base/lora

    • Network Dim/Rank: 32.0

    • Alpha: 16.0

      FF-Minecraft-XL
      Resolution: 1024x1024 Architecture: stable-diffusion-xl-v1-base/lora
      Network Dim/Rank: 32.0 Alpha: 16.0
      Module: networks.lora
      Learning Rate (LR): 0.0005 UNet LR: 0.0005 TE LR: 5e-05
      Optimizer: bitsandbytes.optim.adamw.AdamW8bit(weight_decay=0.1)
      Scheduler: cosine_with_restarts  Warmup steps: 0
      Epoch: 10 Batches per epoch: 121 Gradient accumulation steps: 1
      Train images: 458 Regularization images: 0
      Multires noise iterations: 6.0 Multires noise discount: 0.3
      Min SNR gamma: 5.0 Zero terminal SNR: True Max grad norm: 1.0  Clip skip: 1
      Dataset dirs: 1
              [img] 458 images
      UNet weight average magnitude: 2.9987627096874507
      UNet weight average strength: 0.011098071585284945
      Text Encoder (1) weight average magnitude: 1.729993708156961
      Text Encoder (1) weight average strength: 0.008685239007756952
      Text Encoder (2) weight average magnitude: 1.7630326984758309
      Text Encoder (2) weight average strength: 0.0068346636309082635

    🎨 Readme Crafted by: 🤖 & FFusionAI 🚀

    🌐 Contact Information

    The FFusion.ai project is proudly maintained by Source Code Bulgaria Ltd & Black Swan Technologies.

    📧 Reach us at [email protected] for any inquiries or support.

    🌌 Find us on:

    Email

    🌍 Sofia Istanbul London

    Description

    Knife-FFusion-LoRA-FA

    Resolution: 1024x1024 Architecture: stable-diffusion-xl-v1-base/lora

    Network Dim/Rank: 32.0 Alpha: 32.0

    Module: networks.lora_fa

    Text Encoder (1) weight average magnitude: 3.986337637923385

    Text Encoder (1) weight average strength: 0.018590648076750333

    Text Encoder (2) weight average magnitude: 4.043434837883338

    Text Encoder (2) weight average strength: 0.014620680042179104

    No UNet found in this LoRA

    LORA
    SDXL 1.0
    by idle

    Details

    Downloads
    150
    Platform
    CivitAI
    Platform Status
    Available
    Created
    9/20/2023
    Updated
    9/28/2025
    Deleted
    -

    Files

    Knife-FFusion-LoRA-FA.safetensors

    Mirrors